
A Variability Aware Configuration Management and
Revision Control Platform

Lukas Linsbauer
Advised by: Prof. Alexander Egyed and Dr. Roberto Erick Lopez-Herrejon

Institute for Software Systems Engineering
Johannes Kepler University (JKU) Linz, Austria

http://isse.jku.at/

lukas.linsbauer@jku.at

ABSTRACT
Modern systems need to run in many different contexts like
hardware and software platforms or environmental condi-
tions. Additionally different customers might have slightly
different requirements towards systems. Therefore software
systems need to be highly configurable and provide vari-
able sets of features for different customers. There are var-
ious approaches to developing and managing such systems,
like ad-hoc clone-and-own approaches or structured software
product line approaches for each of which again several dif-
ferent techniques and tools exist to support them. While
the different approaches come with advantages they also
have several disadvantages and shortcomings. Some work
only with specific implementation artifacts (e.g. source code
but not models) and others exist only as plugins for specific
IDEs which makes them intrusive or even unusable in some
development environments. In our work we present a de-
velopment process and tools for managing and engineering
of highly configurable and variable systems that is generic,
incremental, flexible and intuitive. We evaluated our ap-
proach on several case study systems from various different
domains and origins like open source, academia or industry.
The results so far showed promising results.

CCS Concepts
•Software and its engineering → Software configura-
tion management and version control systems;

Keywords
Features, Variants, Configuration, Variability, Versioning

1. INTRO AND PROBLEM STATEMENT
Many real-world systems nowadays need to be highly con-

figurable and provide a variable set of features so that they
can be adapted to different contexts like hardware and soft-
ware platforms, environmental conditions or to different cus-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889262

tomer requirements. A very prominent example is the Linux
kernel that runs on many different architectures or hardware
platforms like laptops, phones and embedded devices. The
current techniques used to realize and maintain such highly
configurable and variable systems have several important
limitations.

Ad-hoc Approaches. These approaches are often also
referred to as Clone-and-Own (C&O) approaches where ex-
isting system variants are cloned and adapted to fit a new
context. The advantage is that C&O is very intuitive and
flexible. A new variant can be created whenever needed
without much preparation and there is no danger to affect
existing variants in an undesired way. However, the dis-
advantage is in the maintenance and evolution of the sys-
tem and its variants. Already with a fairly small number
of variants propagating changes (e.g. bug fixes) to all af-
fected variants is a time consuming and error prone task.
Determining which variants are even affected is already not
trivial. Additionally, when creating a new variant deciding
which variant to clone and use as a base is also not easy
once a larger number of variants to choose from have been
created [2]. Also, often it would be ideal to take implemen-
tations from several existing system variants, and not just
from a single one. In practice, since this is very difficult
to do manually, developers often end up implementing the
same functionality multiple times in different variants which
makes further maintenance even more difficult.

Structured and Systematic Approaches. An exam-
ple for a structured reuse approach is intended for systems
with high variability is Software Product Line Engineering
(SPLE). Functionality (i.e. features) is implemented in a
common, integrated platform as opposed to separate vari-
ants, which makes applying fixes easy. However, applying a
change also requires careful consideration of the effects it will
have, e.g. a change impact analysis to determine whether
system variants will be affected that should not be. Ad-
ditionally, building the integrated platform requires a large
upfront investment of time and money as all possible sys-
tem variants and their features must be carefully planned
and implemented at once. Evolving this platform at a later
time (e.g. adding a new system variant or new features)
is difficult as existing ones must not be broken in the pro-
cess. Various mechanisms exist to implement SPLs. How-
ever, in practice often simple pre-processors in combination
with annotated source code or simple runtime configuration
files are used. Often companies even write their own custom
platforms because existing ones do not satisfy their needs

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion

 803

http://isse.jku.at/
http://dx.doi.org/10.1145/2889160.2889262

[6]. These mechanisms are often limited to a certain type of
implementation artifacts, for example a pre-processor needs
to operate on textual implementation artifacts like source
code but cannot be used on models or diagrams. This is
becoming increasingly important as especially complex sys-
tems very rarely only consist of a single type of artifacts.

2. PROPOSED APPROACH
We propose a development process and supporting tools

and mechanisms that are generic with respect to the im-
plementation artifacts and transparent to possible IDEs or
build tools. Our approach leverages benefits of both ad-
hoc approaches like clone-and-own and systematic reuse ap-
proaches like SPLE. It is flexible, robust and intuitive and
allows for structured and efficient reuse, maintenance and
evolution of systems.

We believe that the correct point of integration for such an
approach is not a custom tool, not an IDE specific solution,
[14, 9] and also not the implementation of the system un-
der development itself (e.g. annotations in the source code).
The most intuitive and most unobtrusive link in the devel-
opment chain that pretty much all development processes
share is the revision control system (for example Git or Sub-
version). However, current version control systems are not
aware of variability at all. Therefore developers often have
no other choice but to use additional tools and mechanisms
(for example pre-processors) to deal with the variability in
their systems, or they try to use mechanisms like branching
to represent different variants of a system [10] which is less
than ideal, as for example common code of variants is repli-
cated in every branch and propagation of changes to those
common parts to all affected branches must be performed
diligently to avoid inconsistencies.

Our approach maintains a central repository similar to
SPLE approaches on the one hand and revision control sys-
tems on the other hand (a very convenient commonality in-
deed). However, in contrast to SPLE the repository is not
filled upfront but rather incrementally on demand like in ev-
ery revision control system. New features and new system
variants (as new combinations of (new) features) are added
to the repository whenever needed with support for auto-
mated reuse from existing variants. Next we explain how
we can achieve this.

2.1 Operations
Our approach is inspired by current revision control sys-

tems like Git or Subversion. This has the benefit that devel-
opers are already familiar with them. Also, the realization
of our approach as a revision control system seems logical
because almost every project, regardless of the type of im-
plementation artifacts or choice of IDE, makes use of them
which makes an even more seamless integration possible.

We define two basic operations that enable our approach:

• checkout <configuration>: Retrieves a given config-
uration from the repository.

• commit <configuration>: Adds a given configuration
to the repository.

A <configuration> represents a variant of a system and is
simply given as a list of features with optional versions, for
example the configuration string "F1.1, F2, F3’" indicates
feature F1 in version 1, feature F2 in its most current version

and a new version of feature F3. A configuration containing
a new version of a feature (or similarly a totally new feature)
as feature F3 in this example simply indicates that a new
(version of) a feature was added to the implementation.

Instead of storing revisions of the full system we store re-
visions of every feature individually. Consequently, instead
of checking out a specific revision of a system, a specific
configuration (i.e. variant of the system) is checked out.

The operations commit and checkout require complex logic
in the background as we do not require a developer to man-
ually trace features to their implementation or modularize
the implementation in any way. In fact, the development
of the actual system will be no different. The operations
are based on algorithms presented in our previous work (see
[8, 3]) that, given a set of system variants, trace features to
their implementation artifacts at a fine-granular level (e.g.
an implementation artifact can be a single statement in a
source code file), which is necessary because variability is
often realized below file level. For this current work we ex-
tend these algorithms to also be able to deal with evolving
features (i.e. different versions of features). The commit

operation compares the contents of the repository with the
configuration and its implementation being committed and
automatically computes traces from features to their im-
plementation artifacts. The repository then does not store
each variant separately but instead stores these traces. The
checkout operation then needs to select the necessary imple-
mentation artifacts from the repository required for a given
configuration and recompose them correctly. Note, that the
checkout operation is also able to check out configurations
(i.e. retrieve system variants) that have never been config-
ured (i.e. committed) before. In such cases, as much as
possible of the known implementation is reused from the
repository (e.g. known features that are part of the config-
uration). Unknown features or new combinations of exist-
ing features might require implementation artifacts that are
not yet in the repository. In such cases the checkout will,
in addition to returning an as complete as possible partial
implementation, also return a list of indicators for missing
implementations to the developer.

As an example consider the scenario where we want to
make a change to the implementation of a variant. Such
change may have several causes. It may be a bug fix to a fea-
ture F that should affect every system variant that provides
that feature. Clone-and-Own approaches would require this
bug fix to be applied to every variant separately. In SPLE
the fix only needs to be applied once to the integrated plat-
form. However, it may also be a change to the behavior
of a feature that was requested by a customer and should
only affect variants intended for that customer. In this case
Clone-and-Own can provide great flexibility while SPLE ap-
proaches run into a problem here as a change to a feature
always affects all variants with that feature, so an option
would be to clone the feature into a new one and change
it. Our approach can deal with this simply by checking out
any configuration containing feature F and specifying the
correct configuration during the checkout and commit oper-
ation. First, check out any configuration suitable for apply-
ing the change. This may be any configuration containing
the feature F that the developer feels comfortable with, for
example checkout BASE, F. Then simply use commit BASE,

F’ to indicate that the changes are intended for a new ver-
sion of feature F, or commit BASE, F, CSF to indicate that

804

the feature F has not changed but rather there is a customer
specific change – let us refer to it as customer specific feature
(CSF) – that interacts with feature F in such a way that it
changes its behavior. The traceability algorithms will take
care of computing the correct traces in either scenario [8, 3].

2.2 Heterogeneous Implementation Artifacts
Systems are rarely implemented by just a single type of ar-

tifacts. Therefore we aim at supporting heterogeneous types
of artifacts in systems, by making it extensible with arti-
fact adapters, starting from simple text files to source code,
UML models or even CAD diagrams. Every artifact type for
which an adapter exists can automatically be traced to fea-
tures during a commit operation and subsequently composed
during a checkout operation.

2.3 Migration to our Approach
The migration from existing sets of system variants to our

approach is simple and can easily be automated. All that
is required is that every existing system variant be checked
into the repository with the correct configuration.

For the migration of SPLs we see two possible scenarios.
All possible variants can be derived from the SPL platform
and then checked into our repository just as in the case of
a set of separate system variants. However, often this set of
possible variants is too large to derive all of them. As an al-
ternative we can leverage the fact that traceability informa-
tion must be present at least implicitly in the SPL platform,
otherwise it could not derive its variants. Therefore a cus-
tom migration tool can be created (using the APIs provided
for our approach) that fills our repository with the necessary
traceability information directly. How easy or difficult it is
to retrieve this information from the SPL platform however
depends on the variability mechanisms it uses. For exam-
ple, extracting traceability information from a SPL that uses
pre-processor annotated source code will require a custom
parser that is aware of the presence conditions in the anno-
tations.

3. EVALUATION
We evaluate our proposed approach based on two aspects.

First we assess the quality of the implementation of a vari-
ant after it has been checked out. We do this by comparing
the implementation of the checked out variant to a refer-
ence implementation of the same variant (i.e. with the same
configuration). The closer the checked out variant is to its
reference implementation the higher its quality. The pro-
cess is shown in Figure 1. From a given set of n variants

of a case study system 1 we use subsets v ⊆ V of differ-

ent cardinalities to be commited 2 into our repository 3 .

Subsequently we check out 4 variants V ′ 5 with the same
features as the given variants V and compare the variants in
V to the corresponding ones in V ′. Our results so far have
shown that already subsets v of rather small cardinalities
result in a high quality of checked out variants, even those
that were not contained in v [8, 3].

Secondly, we assess the correctness of dependencies be-
tween the features in the repository. These dependencies are
derived from the dependencies between implementations to
which the features were traced. The assumption here is that
wrong traces would lead to wrong dependencies between fea-
tures and that correct dependencies are a good indication for

n Given Variants V

Commit Checkout

Repository

n Composed Variants V ′

subset
v ⊆ V

Features F

[comparison]
1

2

3

4

5

Figure 1: Traceability Evaluation

Given Variants V

Given
Variability

Model

Variability
Constraints

Repository

Commit

[expresses]

[implies]

1

2

3

67

Figure 2: Variability Constraints Evaluation

the computed traces being correct. For this evaluation we
assume a variability model to be available for the case study
systems that describes exactly the dependencies and con-
straints between the features in the case study system. The
process is shown in Figure 2. Again, a set of given variants

V 1 is committed 2 into our repository 3 . Then, the

dependencies among features in the repository 6 (based
on the dependencies between the implementation artifacts
the features were traced to during the commit operation)

are compared to the given variability model 7 . The given
variability model may not allow variants that violate any of
the constraints in our repository, otherwise the variant would
be malformed (i.e. not compile or be otherwise incomplete).
However, the given model may impose more constraints than
those in the implementation (e.g. variants that would be
well-formed but make no sense semantically). Therefore, for
a positive outcome, the given variability model must imply
the variability constraints in our repository. Again our re-
sults so far have shown that the traces (and the resulting de-
pendencies between implementations of features) are mostly
consistent with given feature models [6]. In fact, in some
cases where inconsistencies occurred we found that the fault
was actually not in our computed traces but in the given
variability model.

4. CONTRIBUTIONS
We briefly summarize the major contributions of our work:

• Extraction of variability information from system vari-
ants. This includes the computation of traces from fea-
tures to fine-grained implementation artifacts with the
ability to compute not only traces for single features,
but also feature interactions and absence of features,

805

non-unique traces and dependencies between traces
(e.g. a feature requiring the presence of another fea-
ture). (commit operator)

• Automatic composition of variants using the extracted
variability information. (checkout operator)

• A generic, incremental, intuitive and flexible develop-
ment process and tools that leverage benefits of both
structured and ad-hoc approaches.

5. RELATED AND PRIOR WORK
Martinez et al. present a generic and extensible approach

for adopting software product lines from sets of product vari-
ants, called BUT4reuse [9]. Similarly to our work they also
perform feature location and constraints discovery.

Montalvillo and Diaz propose to enhance existing version
control systems with first class operations for supporting the
two typical SPL development life cycles domain engineering
and application engineering [10]. As a proof of concept they
augment the GitHub website with such extra functionality.
In contrast, since our goal is to support the most common
scenario in industry, our operations are oriented more to-
wards well known revision control systems and not so much
towards SPLE paradigms.

Rubin et al. survey feature location techniques for map-
ping features to their implementing software artifacts [11].
The extraction process in our work can also be categorized
as a feature location technique, only that we also consider
additional problems like feature interactions instead of just
single features and also the order of artifacts instead of just
their presence or absence.

Rubin et al. propose a framework for managing product
variants that are the result of clone-and-own practices [12].
They outline a series of operators and how they were ap-
plied in three industrial case studies. These operators serve
to provide a more formal footing to describe the set of pro-
cesses and activities that were carried out to manage the
software variants in the different scenarios encountered in
the case studies. We believe that our variability extraction
techniques can provide the functionality of some of these
operators and we therefore plan to apply our techniques to
such scenarios.

6. PROGRESS AND PUBLICATIONS
We have already devised algorithms for computing fine-

grained traces from features to implementation artifacts and
vice versa that lay the foundation of our proposed develop-
ment process and enabling tools [8, 3]. Our very first work
on the subject computes traces from features and feature
interactions to their implementation artifacts from a set of
product variants [8]. Such traceability information is cru-
cial when dealing with variable features as it is fundamental
for many tasks to know where and how features are imple-
mented. In our subsequent work we improved on this by
allowing for non-unique traces and more fine-grained trace-
ability information [3]. A proof of concept application to a
real world system from industry showed promising results
[6]. An implementation of the early version of the tool as an
Eclipse plugin was implemented [4]. Lastly we broadened
the vision of our approach to also cover the evolution of sys-
tems and their features [7]. The realization of that broader
vision is currently ongoing work.

What remains to be done is the integration of these al-
gorithms into a usable tool and to provide a proper API so
that they can be utilized in custom tools like for example
IDE specific plugins. An evaluation using other implementa-
tion artifacts like UML models or CAD diagrams and more
case study systems in general is also a remaining goal. Lastly
we plan a study in a realistic environment to evaluate the
usefulness of the approach in practice.

7. ACKNOWLEDGMENTS
This work is supervised by Prof. Alexander Egyed (alexander.

egyed@jku.at) and Dr. Roberto Erick Lopez-Herrejon (roberto.
lopez@jku.at). This research is funded by the Austrian Sci-
ence Fund (FWF) projects P25289-N15 and P25513-N15.

8. REFERENCES
[1] ICSME 2014. IEEE Computer Society, 2014.

[2] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski,
M. Becker, and K. Czarnecki. An exploratory study of
cloning in industrial software product lines. In CSMR
2013, pages 25–34, 2013.

[3] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and
A. Egyed. Enhancing clone-and-own with systematic
reuse for developing software variants. In ICSME 2014
[1], pages 391–400.

[4] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and
A. Egyed. The ECCO tool: Extraction and
composition for clone-and-own. In ICSE 2015, pages
665–668. IEEE, 2015.

[5] T. Kishi, S. Jarzabek, and S. Gnesi, editors. SPLC
2013. ACM, 2013.

[6] L. Linsbauer, F. Angerer, P. Grünbacher, D. Lettner,
H. Prähofer, R. E. Lopez-Herrejon, and A. Egyed.
Recovering feature-to-code mappings in
mixed-variability software systems. In ICSME 2014
[1], pages 426–430.

[7] L. Linsbauer, S. Fischer, R. E. Lopez-Herrejon, and
A. Egyed. Using traceability for incremental
construction and evolution of software product
portfolios. In SST 2015, pages 57–60, 2015.

[8] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed.
Recovering traceability between features and code in
product variants. In Kishi et al. [5], pages 131–140.

[9] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and
Y. L. Traon. Bottom-up adoption of software product
lines: a generic and extensible approach. In Schmidt
[13], pages 101–110.

[10] L. Montalvillo and O. Dı́az. Tuning github for SPL
development: branching models & repository
operations for product engineers. In Schmidt [13],
pages 111–120.

[11] J. Rubin and M. Chechik. A survey of feature location
techniques. In Domain Engineering, Product Lines,
Languages, and Conceptual Models, pages 29–58. 2013.

[12] J. Rubin, K. Czarnecki, and M. Chechik. Managing
cloned variants: a framework and experience. In Kishi
et al. [5], pages 101–110.

[13] D. C. Schmidt, editor. SPLC 2015. ACM, 2015.

[14] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke,
G. Saake, and T. Leich. Featureide: An extensible
framework for feature-oriented software development.

806

alexander.egyed@jku.at
alexander.egyed@jku.at
roberto.lopez@jku.at
roberto.lopez@jku.at

